XL 2016 Graphique, moyenne,mediane

kajamiat

XLDnaute Nouveau
Bonjour à tous

Je me permets de vous contacter car je galere pour faire un graph sous excel.

Dans le fichier en pj, j’essaye de :

· Faire un graph en baton

· Par BU / Domain (A ; B, C,D)

· Présentant le % par domaine, y ajouter la médiane, la moyenne et l’écart type.

J’ai calculé ces éléments ms lorsque j’essaye de les ajouter ca bug.

Avez-vous une idée ?

Merci bcp
 

Gardien de phare

XLDnaute Accro
Bonsoir,
Parfait si tu as trouvé une solution. Juste my two cents...
Les boxplot (boîtes à moustache, boîtes de Tukey) n'utilisent pas l'écart-type mais classiquement 6 valeurs : moyenne, médiane, 1er quartile, 3ème quartile, minimum défini comme étant la valeur du 1er quartile - 1,5 fois l'intervalle inter-quartile et le maximum défini comme étant la valeur du 3ème quartile + 1,5 fois l'intervalle inter-quartile. Les valeurs au dessous ou au dessus de ces minimum et maximum sont considérées comme des "outliers" (résidus en français).
Pour ceux que cela intéresse, une excellente référence sur la question, en français, et incontestable...
https://hal.archives-ouvertes.fr/halshs-00287697/document
 

Gardien de phare

XLDnaute Accro
Bonjour,
Difficile de répondre à la question comme ça... Tout dépend de ce que représentent tes données et de ce que tu veux mettre en valeur. Les boxplot sont adaptées à des séries qui sont à peu près conformes à la loi "normale" avec peu d'outliers. Perso, je les utilise beaucoup sur des données de démographie et de revenus, par exemple structure par âges de la population de territoires différents ou d'entreprises. En revanche, elles ne sont pas vraiment utilisables sur des données de qualité par exemple où, par définition, l'amplitude de la série de données est très concentrée autour d'une valeur centrale (sauf qualité totalement erratique, bien sûr !). Dans ce cas l'écart-type donne une information intéressante.
Autrement dit, la notion de "stats de base" dépend des données et de ce que l'on veut démontrer. Un autre exemple : j'ai bossé sur des modèles de prévision temporelle et décidé dans un cas précis de ne pas sélectionner après des tests le modèle qui avait théoriquement les meilleurs indicateurs statistiques de qualité... en effet, ce modèle ne se "trompait" que très rarement, mais les rares erreurs de prévision étaient très importante, les utilisateurs ont choisi un modèle avec des erreurs plus fréquentes, mais toujours assez faibles car ils ont estimé que ces erreurs assez faibles avaient peu d'impact pour eux tandis que des erreurs importantes même exceptionnelles avaient un impact inacceptable sur leur organisation.
 

Statistiques des forums

Discussions
314 719
Messages
2 112 181
Membres
111 452
dernier inscrit
christine64